If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y4 + -5y2 + 1.5 = 0 Reorder the terms: 1.5 + -5y2 + 3y4 = 0 Solving 1.5 + -5y2 + 3y4 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.5 + -1.666666667y2 + y4 = 0 Move the constant term to the right: Add '-0.5' to each side of the equation. 0.5 + -1.666666667y2 + -0.5 + y4 = 0 + -0.5 Reorder the terms: 0.5 + -0.5 + -1.666666667y2 + y4 = 0 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + -1.666666667y2 + y4 = 0 + -0.5 -1.666666667y2 + y4 = 0 + -0.5 Combine like terms: 0 + -0.5 = -0.5 -1.666666667y2 + y4 = -0.5 The y term is -1.666666667y2. Take half its coefficient (-0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. -1.666666667y2 + 0.6944444447 + y4 = -0.5 + 0.6944444447 Reorder the terms: 0.6944444447 + -1.666666667y2 + y4 = -0.5 + 0.6944444447 Combine like terms: -0.5 + 0.6944444447 = 0.1944444447 0.6944444447 + -1.666666667y2 + y4 = 0.1944444447 Factor a perfect square on the left side: (y2 + -0.8333333335)(y2 + -0.8333333335) = 0.1944444447 Calculate the square root of the right side: 0.440958552 Break this problem into two subproblems by setting (y2 + -0.8333333335) equal to 0.440958552 and -0.440958552.Subproblem 1
y2 + -0.8333333335 = 0.440958552 Simplifying y2 + -0.8333333335 = 0.440958552 Reorder the terms: -0.8333333335 + y2 = 0.440958552 Solving -0.8333333335 + y2 = 0.440958552 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = 0.440958552 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = 0.440958552 + 0.8333333335 y2 = 0.440958552 + 0.8333333335 Combine like terms: 0.440958552 + 0.8333333335 = 1.2742918855 y2 = 1.2742918855 Simplifying y2 = 1.2742918855 Take the square root of each side: y = {-1.128845377, 1.128845377}Subproblem 2
y2 + -0.8333333335 = -0.440958552 Simplifying y2 + -0.8333333335 = -0.440958552 Reorder the terms: -0.8333333335 + y2 = -0.440958552 Solving -0.8333333335 + y2 = -0.440958552 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = -0.440958552 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = -0.440958552 + 0.8333333335 y2 = -0.440958552 + 0.8333333335 Combine like terms: -0.440958552 + 0.8333333335 = 0.3923747815 y2 = 0.3923747815 Simplifying y2 = 0.3923747815 Take the square root of each side: y = {-0.626398261, 0.626398261}Solution
The solution to the problem is based on the solutions from the subproblems. y = {-1.128845377, 1.128845377, -0.626398261, 0.626398261}
| p^2+5p-24=0 | | 7x-7=-1x+1 | | 40x-10=71 | | m(m-7)=18 | | 5x^2+x=0 | | y=x^2+x-9 | | 4(x+2)=x+6 | | 2x+69=9x | | -2+k=7-20k^2 | | 10x^2+25x+15= | | 13x+4(x+9)=104 | | t^2+7t-8=0 | | 9n+18=8 | | 6x^2+25b+11=0 | | lnx=1.2 | | k-2=7-5k*4k | | -18=4.5m+12 | | -6(14+2x)=48 | | -18=4.5+12 | | 8(2+4)=x+6 | | 6x-1=1x+19 | | 3(x-5)+2(x-1)=8 | | 7(3-3x)=-210 | | 6x-2n+10-4=26 | | -16t^2+35t-20=0 | | ln(5x)=6 | | 9x^4-20x^2-21=0 | | -4(7x-4)=-292 | | r^2-7r-6=0 | | Z^2(4z^4+z^3-11z^2-6)= | | -3c=-21 | | 0.7w-0.5w+0.3w=4 |